liblaf.peach.optim.objective
¤
Classes:
Objective
¤
Bases: FunctionWrapper
flowchart TD
liblaf.peach.optim.objective.Objective[Objective]
liblaf.peach.functools._wrapper.FunctionWrapper[FunctionWrapper]
liblaf.peach.functools._wrapper.FunctionWrapper --> liblaf.peach.optim.objective.Objective
click liblaf.peach.optim.objective.Objective href "" "liblaf.peach.optim.objective.Objective"
click liblaf.peach.functools._wrapper.FunctionWrapper href "" "liblaf.peach.functools._wrapper.FunctionWrapper"
Parameters:
-
(structure¤Structure[PyTree] | None, default:None) –
Returned by:
-
Reference
Liblaf
peach
-
testing
testingrosen_objective -
optim
abc
abcSetupResultobjective
-
testing
-
Reference
Liblaf
peach
optim
-
optim -
abc
abc -
linesearch
linesearch -
optax
optaxOptax -
pncg
pncgPNCG -
scipy
scipyScipyOptimizer
-
Methods:
Attributes:
-
fun–X -> Scalar
-
grad–X -> X
-
grad_and_hess_diag–X -> X, X
-
hess–X -> H
-
hess_diag–X -> X
-
hess_prod–X, P -> X
-
hess_quad–X, P -> Scalar
-
structure(Structure[PyTree] | None) – -
value_and_grad–X -> Scalar, X
fun
class-attribute
instance-attribute
¤
fun = FunctionDescriptor(
n_outputs=1, unflatten_inputs=(0,), flatten_outputs=()
)
X -> Scalar
grad
class-attribute
instance-attribute
¤
grad = FunctionDescriptor(
n_outputs=1, unflatten_inputs=(0,), flatten_outputs=(0,)
)
X -> X
grad_and_hess_diag
class-attribute
instance-attribute
¤
grad_and_hess_diag = FunctionDescriptor(
n_outputs=2,
unflatten_inputs=(0,),
flatten_outputs=(0, 1),
)
X -> X, X
hess
class-attribute
instance-attribute
¤
hess = FunctionDescriptor(
n_outputs=1, unflatten_inputs=(0,), flatten_outputs=(0,)
)
X -> H
hess_diag
class-attribute
instance-attribute
¤
hess_diag = FunctionDescriptor(
n_outputs=1, unflatten_inputs=(0,), flatten_outputs=(0,)
)
X -> X
hess_prod
class-attribute
instance-attribute
¤
hess_prod = FunctionDescriptor(
n_outputs=1,
unflatten_inputs=(0, 1),
flatten_outputs=(0,),
)
X, P -> X
hess_quad
class-attribute
instance-attribute
¤
hess_quad = FunctionDescriptor(
n_outputs=1, unflatten_inputs=(0, 1), flatten_outputs=()
)
X, P -> Scalar
structure
class-attribute
instance-attribute
¤
value_and_grad
class-attribute
instance-attribute
¤
value_and_grad = FunctionDescriptor(
n_outputs=2, unflatten_inputs=(0,), flatten_outputs=(1,)
)
X -> Scalar, X
flatten
¤
flatten(
params: PyTree,
*,
constraints: Iterable[Constraint] = (),
) -> tuple[Self, Shaped[Array, " free"], list[Constraint]]
Source code in src/liblaf/peach/functools/_wrapper.py
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 | |
jit
¤
Source code in src/liblaf/peach/functools/_wrapper.py
45 46 | |
partial
¤
Source code in src/liblaf/peach/functools/_wrapper.py
51 52 53 54 | |
timer
¤
Source code in src/liblaf/peach/functools/_wrapper.py
58 59 | |
timer_finish
¤
timer_finish() -> None
Source code in src/liblaf/peach/functools/_wrapper.py
61 62 63 64 65 66 67 68 | |